Elementary Computation of Object Approach by a Wide-Field Visual Neuron

Nicholas Hatsopoulos; Fabrizio Gabbiani; Gilles Laurent

Stable URL:
http://links.jstor.org/sici?sici=0036-8075%2819951110%293%3A270%3A5238%3C1000%3AECOOAB%3E2.0.CO%3B2-D

Science is currently published by American Association for the Advancement of Science.
An essential function of the brain is to detect threats, such as those posed by objects or predators on a collision course. A wide-field, movement-sensitive visual neuron in the brain of the locust was studied by presenting simulated approaching, receding, and translating objects. The neuron's responses could be described simply by multiplying the velocity of the image edge (dθ/dt) with an exponential function of the size of the object's image on the retina (e^(-θ)). Because this product peaks before the image reaches its maximum size during approach, this neuron can anticipate collision. The neuron's activity peaks approximately when the approaching object reaches a certain angular size. Because this neuron receives distinct inputs about image size and velocity, the dendritic tree of a single neuron may function as a biophysical device that can carry out a multiplication of two independent input signals.

Vision plays an important role in notifying animals of imminent danger, such as an impeding collision with a predator or an environmental surface. One possible strategy for collision avoidance is for the animal to react when the object is at a given distance away from it. This would require that the animal estimate depth, using cues such as motion or binocular parallax. Many animals, such as arthropods, can avoid rapidly approaching objects, but are unlikely to use this strategy because their binocular fields and the spacing between their eyes are too small.

A second possible strategy is to react at a given time before collision by monitoring the symmetrical expansion of the image projected on the retina by the approaching object (1). Behavioral and electrophysiological evidence from birds and flies support the use of this strategy (2). Imagine an object subtending an angle θ at a distance d from the eye (Fig. 1A). If this object moves toward the animal at a constant velocity v, its image on the retina will grow increasingly faster as the object approaches (θ will increase nonlinearly as θ increases; the dot means time derivative). The tau function (3),

$$\tau(t) = \frac{d}{\sin \theta \cos \theta} \frac{d}{o} \approx \theta \text{ if } \theta \text{ small}$$

where t is time, is useful because it can provide the time before collision without any explicit knowledge of d. The tau function can be obtained from the optical flow field and requires only knowledge of θ and d, which can both be determined monocularly at the retina. The function τ(t) (4) could be encoded in the firing rate of a neuron, and an escape command would be triggered when τ(t) has decreased below a threshold value (Fig. 1C). Alternatively, the brain could compute 1/τ(t), which peaks at collision (Fig. 1C). In this case, an escape command would be triggered when 1/τ(t) exceeds a certain threshold. In either case, the timing of escape depends on determining that a threshold has been crossed, which is a difficult problem for biological systems. We now report that a pair of identified neurons in an insect brain adopts yet a different, strategy to track object approach, combining θ and θ nonlinearly to yield a response profile similar to the function f(t) (Fig. 1C).

We studied the LGMD and DCMD neurons (Fig. 1B), two connected, motion-sensitive neurons in the brain of the locust Schistocerca americana (5–7). These visual neurons respond to novel, small contrasting object motion, regardless of direction or orientation, and are inhibited by large-field motion (such as flow fields generated by the animal's own motion) (8). More recent investigations (9, 10) have shown that the LGMD and DCMD neurons respond preferentially to approaching rather than translating objects and have suggested that the feature most closely correlated with their firing is angular acceleration of the image edges (11).

We recorded the response of DCMD to simulated “approaching” objects presented monocularly to the animal (12) and noted that it differs significantly from the acceleration profile of the image. First, when a simulated object approached the animal at a low but constant velocity (a condition in which image angular velocity and acceleration increase as the image grows larger), DCMD activity peaked before the image acceleration was maximal (Fig. 2A) (13). If DCMD tracked image acceleration, its firing rate should not decrease before the acceleration peak (14). The timing of the DCMD peak firing rate was strongly correlated with the collision time (Fig. 2C, regression coefficient = 0.963, r^2 = 0.9998) (15). The delay between peak firing and collision, however, was a function of both object size and object velocity (Fig. 2D). This indicates that DCMD does not encode τ(t) or 1/τ(t), because τ is independent of these two parameters. Second, when the simulated object decelerated while approaching the animal (image angular velocity held constant, that is, image acceleration θ = 0), DCMD responded strongly at first and continued firing, although progressively less strongly, as the simulated object

Elementary Computation of Object Approach by a Wide-Field Visual Neuron

Nicholas Hatsopoulos,* Fabrizio Gabbiani, Gilles Laurent†

An essential function of the brain is to detect threats, such as those posed by objects or predators on a collision course. A wide-field, movement-sensitive visual neuron in the brain of the locust was studied by presenting simulated approaching, receding, and translating objects. The neuron's responses could be described simply by multiplying the velocity of the image edge (dθ/dt) with an exponential function of the size of the object's image on the retina (e^(-θ)). Because this product peaks before the image reaches its maximum size during approach, this neuron can anticipate collision. The neuron's activity peaks approximately when the approaching object reaches a certain angular size. Because this neuron receives distinct inputs about image size and velocity, the dendritic tree of a single neuron may function as a biophysical device that can carry out a multiplication of two independent input signals.
“approached” (Fig. 2B). If DCMD were encoding image edge acceleration, it might have responded briefly when the object became detectable but should not have continued to respond during approach when the angular acceleration was zero. DCMD, therefore, does not appear to track image edge acceleration (16).

DCMD might rather implement an alternative representation of object approach such as that modeled by f(t) [compare f(t) (Fig. 1C) to DCMD response (Fig. 2A)]. Because θ (image size) and ω (angular velocity) are both measured at the retina, we looked for a function of these two variables that reproduced the essential features of f(t) (Fig. 1C). We first examined the dependence of DCMD activity on θ. If an object, a striped pattern, or a sine wave grating is moved laterally (translated) in front of the eye (rather than in depth), the wave grating is moved laterally (translated) in the angular acceleration was zero. DCMD continued to respond during approach when examined the dependence of DCMD activity firing rate of DCMD was well fitted by an constant edge velocity stimuli (17) so as not to confound the response with changing angular velocity signals. We observed that the firing rate of DCMD was well fitted by an exponential function of the size of the object (e^−αθ, where α is positive; Fig. 2, E and F) (18).

The response of DCMD to simulated objects moving toward or away from the eye was then examined (12). In these experiments, both the size and the velocity of the retinal image varied in time, in a manner dependent on the velocity of simulated approach or recession. In all cases tested (3 velocities × 3 sizes = 9 conditions in each of five animals), the response of DCMD at a particular time could be described by a function that simply multiplies the size dependence of its response (e^−αθ as determined above) by the image’s instantaneous angular velocity (Fig. 3):

\[f(t) = C \left(\theta(t - \delta) e^{-\alpha \theta(t-\delta)} \right) \]

The delay parameter δ represents the latency between the stimulus and DCMD response onsets and was set between 0 and 40 ms (constant value for each animal), as suggested by experimental evidence (14, 19). C is a proportionality constant (20). (θ) (the absolute value of θ) was chosen because DCMD is not directionally selective and thus responds to object recession as well as approach by an increase in firing rate (10, 11). To gain an intuitive understanding of f(t), consider an object approaching at constant velocity v, such that both θ and e^−αθ increase with time. When the object is far (θ small), θ increases faster than e^−αθ decreases, resulting in an increase of f(t). As the object approaches, the situation reverses because of the exponential dependence of the last factor in Eq. 1. The function f(t), therefore, peaks before collision.

According to Eq. 1, the time of peak DCMD activity (t_{peak}) relative to the time of collision (t_{coll}) should depend linearly on the ratio of the object size (S_{obj}) to the velocity of approach (v), with a slope coefficient of \(\frac{\delta}{\alpha} \) (21):
This prediction of linearity was verified experimentally over a wide range of size/velocity ratios in five animals (Fig. 2D). We therefore used the value of \(\alpha \) computed for each animal from the slope of the regression line (Eq. 2) to fit the DCMD activity profiles (Fig. 3). The firing rates of DCMD have been superimposed on the values predicted by the model in conditions of constant approach velocity \(v \) (Fig. 3A to C) or constant angular velocity \(\theta \) (Fig. 3D).

The strength of this model lies in the observation that \(\delta, \alpha, \) and the exponential dependence on \(\theta \) were all constrained by independent experimental data and that \(\delta \) and \(\alpha \) were fixed for all size and velocity conditions in each animal (Fig. 3, A to D). In addition, the proportionality constant \(C \) used to match the exact values of DCMD firing rates was fixed for all conditions in each animal. Finally, this model also fitted the data obtained with decelerating objects in which the angular velocity of the image edges was held constant (Fig. 3D) (22, 23).

We thus propose a simple algorithm that describes the integrative properties of a visual interneuron and that could, in principle, be used by any visual system to anticipate the time of collision with approaching objects, using simple monocular signals. It has been proposed that whole field inputs to the locust LGMD are provided by feed-forward inhibitory pathways that terminate on a single proximal dendrite (Fig. 1B), separate from the fan-shaped arbor that collects velocity signals from local movement-detector elements (8) [although this proximal dendrite is not present in all LGMD-like neurons (24)]. The good agreement between \(f(t) \) and the DCMD response suggests that the dendritic tree of LGMD operates as a biophysical device that multiplies two independent inputs, the size \((e^{-\alpha t}) \) and velocity \((\theta) \) signals, during object motion in depth. Using a logarithmic transformation, such multiplication might be accomplished by linear summation of \(-\alpha t + \log \theta \) (size) and \(\log (\theta) \) (exponential) conversion of the resulting dendritic potential into a firing rate. Alternatively, this multiplication could be performed by way of shunting inhibition (25) of the velocity signal by the size signal on the primary neurite. This neuron may therefore be ideal to study quantitatively the relation between dendritic geometry, intrinsic membrane properties, and computational function. Finally, the principles derived here might be used to design artificial collision anticipation devices, through use of neuromorphic hardware implementations such as silicon retinae (26).

REFERENCES AND NOTES

6. Experiments were carried out with 23 adult locusts of either sex; 13/23 were selected for complete analysis. The visual stimuli were created with a Hewlett-Packard workstation (HP715/80) with double buffering of screen memory (Starbase graphic library). The images were shown on a video monitor (HP4033A) with a refresh rate of 71.7 ms per frame. The screen, shielded to minimize electromagnetic noise, was placed in the dark, 7 cm in front of one eye; the other eye was blocked. Stimuli consisted of one to four dark squares or circles (2 cm \(\times \) 2 cm) on a bright background (79 cd m\(^{-2}\)) that expanded (and then contracted) to simulate approach and recession at constant or variable velocity (for example, mimicking deceleration during approach). The size of the objects on the screen was computed for each frame by perspective projection, with the eye representing the center of projection. At the onset of approach, the objects subtended less than 1° of visual angle, that is, less than the interommatidial angle in the center of the eye. At the end of approach, objects had moved a fixed simul- lated distance, and the final subtended angle thus varied with the size of the simulated object \((S_{\text{obj}} = 3, 4, 5, \text{and } 6 \text{ cm}) \). In other trials, the objects moved different distances so that the final value of \(\theta \) was \(40^\circ \). Intertrial intervals were 40 or 80 s, to prevent habitu- ation of the response. Data acquisition was synchro- nized to the stimulus with a photocell that read a moving cursor through the retinula. The activity of DCMD was recorded extracellularly with metal hook- electrodes placed around the neck connectives. The data were stored on digital audio tape and analyzed off-line. Spikes were digitized (Spikestudio, version 5.1; E. Meir, Cornell University). Peristimu- lus histograms were constructed with a bin size of 13.9 ms (that is, one bin per stimulus image).
7. The neuron’s response lags behind the stimulus, be- cause of neuronal delays. The signal path between stimulus and DCMD response involves phototrans- duction in the retina, processing in the lamina, medul- la, and lobula, and synaptic transmission between LGMD and DCMD. These successive steps probably explain the latency. The exact value of this delay is a function of the intensity and contrast of the stimulus presented, which were kept constant in our experi- ments (12). Determination of the true value of \(\delta \) was limited by the resolution with which firing peaks could be measured, that is, by the width \(\Delta \theta \) (ms), which corresponds to the image refresh rate.
8. The DCMD peak firing \(f(\text{peak}) \) was also strongly correlated with, and preceded, the onset of hindleg femoro-tibia1 flexion in preparation for an escape jump [firing onset \((f(\text{onset}) = 0.9998) \). Five animals were filmed with a video system (80 Hz), and the femorocoxal angle was mea- sured with the Peak Movement Analysis System. Syn- cronization of the video and stimulus signals was achieved with the photocell signal read from the monitor screen (12).
9. Given that acceleration is the second time-derivative of a position signal, it would likely be a very noisy signal to measure and observe accurately.
10. In the case of a translating object, the local edge velocity \(v \) does not correspond to the rate of ex- pansion of the image. By contrast, in the case of an expanding (approaching) object, \(v = \Delta \theta \). Although
21. The function \(f(t) \) will peak when its time derivative is 0.

22. To verify that it represents the subtended angle of approaching objects and not the angle that separates their edges from the focus of expansion (point of null velocity during approach or recession), we performed a computer simulation comprising four squares around the focus of expansion. Each square was one-sixth the size of the ensemble outline. In such conditions, we found that the best fits to the data were obtained when \(r \) represented the angular extent of each object (67% of the variance was explained by model, where \(r \) was the only free variable) and not the angle between it and the focus of expansion (14.3% of the variance was explained by model, under the same conditions).

23. It can be shown from Eq. 2 (21) and by using trigonometry that the angle \(t_{\text{peak}} \) at which which peak firing is related to the value of \(\alpha \) by the following relation:

\[
\cot \theta = \frac{\alpha}{2 S_{\alpha}}.
\]

This relation indicates, for example, that if \(\theta \) or the approach velocity \(v \) (or both) are small, the angle \(t_{\text{peak}} \) at which peak firing of LGMD and DCMD is attained should be constant for a wide range of object sizes. Thus, LGMD and DCMD can be considered as preferring a particular and fixed angular size \(S_{\text{peak}} \) = \(t_{\text{peak}} \). It follows from Eq. 3 that, when \(\theta \) is negligible (for example, \(\theta = 40 \) mrad), the peak firing will not occur for a fixed value of \(\theta \). When \(\theta \) is constant, for example, the peak firing will occur earlier if the object is larger. When the object size is held constant, the peak firing will occur later if \(v \) is increased.

28. Note the good agreement between data and model in all size and velocity conditions. Better fits could be obtained if \(\theta \) and \(\alpha \) were unconstrained.

29. We gratefully acknowledge C. Koch (NSF Center for Neuromorphic Systems Engineering) for use of the Hewlett-Packard workstation and D. van Essen for use of the photocell. We thank A. Braun for computer assistance and E. Schuman, C. Koch, and an anonymous referee for comments on the manuscript. Supported by NSF grant IBN-9412426 (F.G.) and an Office of Naval Research grant and NSF-Presidential Faculty Fellow Award to G.L.

30 June 1995; accepted 6 September 1995

Does the p53 Up-Regulated Gadd45 Protein Have a Role in Repair?

Martin L. Smith et al. (1) report stimulation of excision repair in DNA by Gadd45 protein. They used the repair synthesis assay that measures the preferential incorporation of nucleotides into damaged DNA compared to undamaged DNA. As DNA excision repair involves two basic steps, excision and resynthesis, we wished to know whether the increased repair synthesis observed with Gadd45 resulted from increased excision or was a secondary effect of stimulation of the repair polymerase (or polymerases) without actually increasing the amount of adducts removed. We investigated the effects of Gadd45 by the use of the excision assay that measures the release of the damaged nucleotide in the form of an oligonucleotide (2).

We measured the effect of Gadd45 at various concentrations by the excision assay with HeLa cell-free extracts (Fig. 1). We did not observe any stimulation or inhibition within the concentration range used. As Smith et al. (1) report stimulation of Gadd45 in the range of 40 to 400 ng per assay, we conducted a kinetic experiment using 340 ng of the Gadd45 protein in our standard excision reaction. Gadd45 had no effect on the kinetics of excision repair (Fig. 2).

To eliminate the possibility of experimental artifacts resulting from nonrepair proteins in cell-free extracts that can bind to Gadd45 and interfere with its repair stimulatory effect, we also tested the effect of Gadd45 protein on repair, with the use of a defined excision nucleotide system reconstituted from highly purified repair proteins (2). We saw no effect on excision repair in this system with the concentration of Gadd45 tested. We considered that the stimulatory effect could be unique to the cell lines used by Smith et al. (1). Therefore, we performed the excision assay with the ML-1 cell line used by Smith et al. (1). The cell-free extract from this cell line gave a weaker excision signal compared to HeLa cell-free extract; however, as with HeLa cell-free extract and with the defined system, Gadd45 did not have a stimulatory effect on excision by the ML-1 cell-free extract (Fig. 3).

As Smith et al. (1) used the repair synthesis assay, and as they found that Gadd45